General Certificate of Education January 2005 Advanced Subsidiary Examination

MATHEMATICS Unit Pure Core 1

MPC1

Friday 21 January 2005 Afternoon Session

In addition to this paper you will require:

- an 8-page answer book;
- the **blue** AQA booklet of formulae and statistical tables. You must **not** use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The *Examining Body* for this paper is AQA. The *Paper Reference* is MPC1.
- Answer all questions.
- All necessary working should be shown; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is **not** permitted.

Information

- The maximum mark for this paper is 75.
- Mark allocations are shown in brackets.

Advice

• Unless stated otherwise, formulae may be quoted, without proof, from the booklet.

P76510/0105/MPC1 6/6/ MPC1

Answer all questions.

- 1 The point A has coordinates (11, 2) and the point B has coordinates (-1, -1).
 - (a) (i) Find the gradient of AB.

(2 marks)

(ii) Hence, or otherwise, show that the line AB has equation

$$x - 4y = 3 (2 marks)$$

- (b) The line with equation 3x + 5y = 26 intersects the line AB at the point C. Find the coordinates of C. (3 marks)
- **2** A curve has equation $y = x^5 6x^3 3x + 25$.

(a) Find
$$\frac{dy}{dx}$$
. (3 marks)

- (b) The point P on the curve has coordinates (2, 3).
 - (i) Show that the gradient of the curve at *P* is 5.

(2 marks)

- (ii) Hence find an equation of the normal to the curve at P, expressing your answer in the form ax + by = c, where a, b and c are integers. (3 marks)
- (c) Determine whether y is increasing or decreasing when x = 1. (2 marks)
- 3 A circle has equation $x^2 + y^2 12x 6y + 20 = 0$.
 - (a) By completing the square, express the equation in the form

$$(x-a)^2 + (y-b)^2 = r^2$$
 (3 marks)

- (b) Write down:
 - (i) the coordinates of the centre of the circle;

(1 mark)

(ii) the radius of the circle.

(1 mark)

- (c) The line with equation y = x + 4 intersects the circle at the points P and Q.
 - (i) Show that the x-coordinates of P and Q satisfy the equation

$$x^2 - 5x + 6 = 0 (2 marks)$$

(ii) Find the coordinates of P and Q. (4 marks)

- 4 (a) The function f is defined for all values of x by $f(x) = x^3 3x^2 6x + 8$.
 - (i) Find the remainder when f(x) is divided by x + 1. (2 marks)
 - (ii) Given that f(1) = 0 and f(-2) = 0, write down two linear factors of f(x).

 (2 marks)
 - (iii) Hence express $x^3 3x^2 6x + 8$ as the product of three linear factors. (2 marks)
 - (b) The curve with equation $y = x^3 3x^2 6x + 8$ is sketched below.

- (i) The curve intersects the y-axis at the point A. Find the y-coordinate of A. (1 mark)
- (ii) The curve crosses the x-axis when x = -2, when x = 1 and also at the point B. Use the results from part (a) to find the x-coordinate of B. (1 mark)
- (c) (i) Find $\int (x^3 3x^2 6x + 8) dx$. (4 marks)
 - (ii) Hence find the area of the shaded region bounded by the curve and the x-axis.

 (3 marks)
- 5 (a) Simplify $(\sqrt{12}+2)(\sqrt{12}-2)$. (2 marks)
 - (b) Express $\sqrt{12}$ in the form $m\sqrt{3}$, where m is an integer. (1 mark)
 - (c) Express $\frac{\sqrt{12}+2}{\sqrt{12}-2}$ in the form $a+b\sqrt{3}$, where a and b are integers. (4 marks)

6 The diagram below shows a rectangular sheet of metal 24 cm by 9 cm.

A square of side x cm is cut from each corner and the metal is then folded along the broken lines to make an open box with a rectangular base and height x cm.

(a) Show that the volume, $V \text{ cm}^3$, of liquid the box can hold is given by

$$V = 4x^3 - 66x^2 + 216x (3 marks)$$

(b) (i) Find
$$\frac{dV}{dx}$$
. (3 marks)

- (ii) Show that any stationary values of V must occur when $x^2 11x + 18 = 0$. (2 marks)
- (iii) Solve the equation $x^2 11x + 18 = 0$. (2 marks)
- (iv) Explain why there is only one value of x for which V is stationary. (1 mark)

(c) (i) Find
$$\frac{d^2V}{dx^2}$$
. (2 marks)

(ii) Hence determine whether the stationary value is a maximum or minimum.

(2 marks)

7 (a) Simplify
$$(k+5)^2 - 12k(k+2)$$
. (2 marks)

(b) The quadratic equation $3(k+2)x^2 + (k+5)x + k = 0$ has real roots.

(i) Show that
$$(k-1)(11k+25) \le 0$$
. (5 marks)

(ii) Hence find the possible values of k. (3 marks)

END OF QUESTIONS